Supporting a Capability-Based Architecture with
Silicon

D. Abramson and J. Rosenberg
Department of Computer Science, Monash University, Clayton, VIC

Capability-based addressing was first proposed in 1966, yet very few computers which use the scheme
have actually been produced. This can be largely attributed to the complex hardware required to
achieve acceptable performance. This paper presents the design of a VLSI chip to support capability
style address computations.

1. INTRODUCTIOCN

Capability based addressing was first proposed in 1966 by Dennis and
Van Horn [Dennis & Van Horn, 1966] as a technique for structuring and
protecting information in the memory of a computer. It is appealing
because it solves many of the problems of sharing data and provides a
uniform mechanism for controlling access to information [Fabry, 19741

Several capability based machines have been constructed both in the
research environment [England, 1972; Wulf, et al, 1974; Needham, 1977] and
commercially [I.B.M., 1978; Intel, 1981]. Unfortunately they have not
become popular. One of the main reasons appears to be that they require a
higher level of hardware support than conventional Von Neumann machines in
order to achieve fthe same efficiency.

The new technology of custom made VLSI chips poses the question of
whether an efficient and cost effective implementation of a capability
based processor is now possible. This paper discusses some relevant issues
and describes a particular design.

2. CAPABILITY-BASED ADDRESSING IN THE MONADS ARCHITECTURE

The MONADS project began in 1976 at Monash University and has the
primary aim of investigating technigues for the development of large and
complex software systems. The main technique involves the decomposition of
such systems into a number of small information hiding modules [Parnas,
1072; Keedy, 1982]. The technique requires that ' each module can only
access its own data and that interfaces between modules are purely
procedural. It is also necessary to allow multiple instances of the same
type of module and this requires sharing of code. Capability based
addressing supports both of these requirements. This section describes the
particular model used in the MONADS architecture.

The MONADS architectwre has a uniform virtual memory which holds both
computational and permanent (file) data. All data is addressed by a large
virtual address consisting of two parts, an address space number and an
offset, as shown in Figure 1. Each address space contains data which i3
related in some way (e.g. the procedures of a module, segments of a file)
and the offset identifies a particular byte within the address space.
MONADS virtual addresses are capabilities in that they are unique and are
never reused.

Each address space may be divided into many segments and these are
defined by segment lists. Behind the segmentation scheme is a paged

43

virtual memory, however, there is no direct relationship between segments
and pages. The details of this scheme are described elsewhere [Keedy,
19801 and are not relevant to this paper. A1l that is important is that
each segment 1list entry describes a region of virtual memory (Figure 2).
The base within the segment list entry defines the start of the segment
and the limit defines the end. Executing programs can only access segments
for which they have a segment list entry. For efficiency reasons segment
list entries are never used directly, rather their contents are loaded
into special capability registers before use. Thug instructions need only
name the capability register in order to refer to a segment of data.
Access te individual bytes requires the specification of an additional
offset within the segment. This can be contained within the instruction
together with the capability register number. Access to arrays and other
dynamic data structues requires that the offset within segment de
calculated at run time. This is implemented by an indexed addressing mode
which causes the contents of an index register to be combined with the
offset within the Instruction. Thus the generation of an effective virtual
address involves the addition of the base within the capability register
to the offset within the instructicn and the contents of the index
regizter, This 1is then compared with the limit value in the capability
register before the memcry reference can proceed. In order to support
both word and byte addressing the index register is optionally scaled
before the addition.

The addressing scheme described above is very powerful and flexible,
It will support access to an individual element within an array of records
in a single instruction, and can also be used for stack addressing and
program instruction fetching. 3Several machines implementing this scheme
have been proposed and constructed at Monash University., These include
MONADS II, MONADS 1I/2 and MONADS III [Abramson, 1982; Rosenberg, et al,
1982; Rosenberg, 1982; Rowe, 1982: Keedy, et al, 19821,

The latest phase of the project is the design and construction of =
small workstation, called MONADS-PC, which supports the MONADS
architecture [Rosenberg & Abramscn, 19853, It is invisaged that a number
of these workstations would be connected via a high speed local area
network [Abramson & Keedy, 19857.

3. IMPLEMENTATICON OF MONADS-PC

The MONADS-PC computer comprises three main subsystems as shown in
Figure 3, The memory and I/0 subsystem is implemented using standard
MULTIBUS [Intel, 1978] and off-the~shelf memory and device controllers and
ls of nc concern to this paper. The address translation subsystem is
responsible for translating the large virtual addresses {6¢ bits on
MONADS-PC, composed of a 32 bit address space number and a 28 bit offset)
into main memory addresses and includes a cache to reduce memory traffic.
This section 1is alsc not relevant to this paper. The main processor
subsystem is responsible for interpreting and executing machine
instructions. It is the maln processor which must perform the address
calculations described above and finally generate a virtual address. In
the following sections the current implementation is described and an
alternative faster solution is discussed.

3.1. Current Implenentaticon

The main prccesseor consists of a microprogrammed control unit and a
regular three hus structure arithmetic unit. The basic cycle time is 175
nanoseconds. The buses are all 32 bits in width and connect the registers
and ALU as shown in Figure 4., The 16 capability registers are held in the
dual ported RAM file and there are two separate 32 bit memory address

44

g b e B T

registers to hold the virtual address. There are three index registers
for combination with any of the capability registers and these are also
held in the dual ported RAM. The off'set within segment may be diresctly
accessed from the instruction register, as can the <capability register
number and the index register number. One input of the ALU can be scaled
Lo convert a word offset into a byte address.

There are apecial capability registers for stack and program
instruction fetching which are held in the dual ported RAM. These are used
in a similar manner to the normal capability registers.

The following control sequence is required in order to generate a
virtual address:

(1 capability register.address_space -> memory_ address space register
(2) capability register.base + instruction register.offset -> hold register
(3) scale{index register) + hold register ~-> memory offset register

(4) if {memory offset register — capability register.limit) > 0O
cause an error - '
else
perform memory operation.

Thus four machine c¢ycles are required for every memory reference

instruction. This same seqguence must be performed each time an
instruction is fetched, There are a number of notable attributes of ¢this
scheme.

{1} There is no special hardware to support the address calculation. The
ALU and a register file would be required for a conventional machine.

{2} The first and second step could have been overlapped had there been a
wider data pathway.

{3) The two addition oﬁerations could have been performed faster had the
three operands been available in one c¢yecle. Moreover a better
addition algorithm could have avoided two carry propagation times.

The next section considers a faster implementation which uses direct
hardware support for the address calceculation.

3.2. A Faster Implementation

‘ Figure 5 shows a block diagram of the proposed address computation
unit. The unit would connect to the general data pathways shown previously
and the registers could be loaded and retrieved via the normal data buses.
The Thardware is split into two secticns, one which generates the address
space number {which requires no computation, and is not shown in the
Figure) and the other to calculate the offset within address space.
Clearly the first consists only of a small RAM file indexed by capability
register number. For clarity only ftwo bits of the offset calculation
hardware are shown.

Corresponding bits of the capabllity register.base, the
index register and the instruction register.offset are combined by a
normai adder circuit, using the carry input as the third operand {this
technique was first proposed by Wallace for the implementaticn of fast
multiplication [Wallace, 1964]). + This stage requires no carry
propagation. The sum and carry outputs of these adders are then combined
by a carry propagation adder to produce the final virtual address coffset,
The 1limit is then subtracted from the offset to form an error signal. (A4
faster solution would involve using an additional three level tree for

45

adding/subtracting the base, index, offset and limit to generate the error
signal in parallel with the virtual address offset computation. This would
avoid the subtraction propagation time.)

The advantage of this scheme is that it c¢ould perform the full
address calculation in about one machine cycle. The scheme was not used
in the MONADS~PC processor because of the amount of extra hardware
required over the central processor. It was estimated that it would
require about 35 TTL chips. (The parallel scheme weould require many more
chips.) The regular structwe and simple internal components suggest that
a VLSI implementation would be appropriate,

4, A SILICON IMPLEMENTATION

4.1. General Structure

The address calculator chip is connected to the main processor as
shown in Figure 6. The address space number is simply read from the
address space RAM. The offset is lcaded into the address calculator as
soon as it is available and the within address space offset is computed.
Because the offset is 28 bits in length the input and output lines on the
chip must be shared. The only additional input signals are the capability
register number (& bits)} and the index register number (2 bits)., The error
signal is returned as an output signal.

The chip is structured using the bit slice technigue. Thus the basic
element consists of one bit of the base register, one bit of the index
register, cne bit of the offset register, one bit of the three way adder,
one bit of the carry propagation adder and one bit of subtractor. These
single bit slices can then be concatenated to form an offset of any
length., Each bit slice is structwed using the Mead and Conway [Mead &
Conway, 1980] design approach.

4,2, Implementation Details

The registers in the bit slices are dynamic and thus each has a
refresh line and a load line. The base and limit registers are connected
to precharged base and 1imit buses. These twc buses extend down the chip
in one direction, thus the height of the chip is determined by the number
of capability registers. Each register must actively discharge the bus to
assert a zero value, The 1initial implementation only provides 4
capability registers. "The index registers are also connected to a
precharged bus, but there are only three registers available., The index
mode of addressing may be disabled by a kill-index signal which discharges
the index bus. This mode is useful if the addressing mode does not need an
index register value.

The three way adder is built from two function Dblocks. The offset
register 1is connected to the diffusion lines and the bhase and index buses
are connected to the poly control lines. The output of the two funetion
blocks is &2 sum signal and a carry signal. These are connected to a full
adder cell. The adder cell is taken from the OM2 processor [Mead & Conway,
1980 {chapter 5); Newkirk & Matnews, 1983] and uses a precharged carry
chain with carry kill logic. The output of the adder cell is connected to
another adder for the limit subtraction. I% may have been possible to
remove the subtractor unit and reuse the adder circuit, nowever, this was
not realized until much of the design had been campleted.

The chip makes quite heavy use of precharged buses, both for data
transfer and alsc for carry propagation. Whilst this complicates the
overall timing of the c¢hip, it is fast. Each bit slice measures 100 by 800
lambda for 4 capability registers and three index registers. Fach extra

46

PP U,

or

Y R J

capability register would increase the size of each slice by 100 by 70
lambda. Thus a 28 bhit slice, without the extrz control logic and pad
space, ‘would cccupy 7 by 2 mm with lambda = 2.5 microns, or 14 5Q.mm.
These figures indicate that, whilst expensive, it would be possible to fit
a2 28 bit unit on one multi project chip. At the time of writing this paper
the timing was being analysed and figures were not available.

The c¢hip design was constructed using the KIC2 editor and associated
conversion tools. MCSSIM was used for logic similation and SPICE was used
for timing analysis.

5. CONCLUSION

Most of the design, testing and analysis has been completed for one
bit of the <chip. Each slice is designed to be connected end-on with the
next slice, making expansion easy. The capability registers and base-limit
buses were also designed so that they could be extended if extra registers
were required. Our experience in the MONADS project is that 16 registers
is ample, and it may be possible to manage with less.

It is unlikely that a full 28 bit unit will be fabricated due tc the
cost, however, 1t is hoped that a 4 bit slice will be built and tested.
Future research will be to design a full chip set to impiement the MONADS
architecture. Candidates for special purpese chips are address
translation, cache management and microprogram control. It may be possible
to use the current commercial bit slice components for the data pathways
given that the address calculations are performed by a special purpose
chip.

Some useful functions which were not included in the chip would be an
auto increment/decrement mode on the index register. This mode could then
be used for stack addressing and for program instruction fetching. Another
function not implemented is the scaling of the index register value for
conversion of word offsets into byte offsets, Whilst this is logically
simple it was not included in the initial design as it complicates each
bit slice.

In this paper we have examined the current implementation of address
generation In the MONADS architecture, and have described a faster
solution. The alternative was not chosen for a TTL version because of the
board space required, but can be efficiently implemented using VLSI
techniques.

ACKNCWLED GEMENTS

The authors wish to acknowledge the influerice that Professor Les
Keedy, the instigafor of the project, has had on the MONADS architecture.
Thanks are due to Professor Chris Wallace for reminding us of how to add
many numbers together. Thanks also go to S.Y. Tam and L.C. Sim for their
heip in implementing parts of the chip. '

REFERENCES

ABRAMSON, D.A., 1983. The MONADS II Canbuter System. Proc. 6th. Australian
Computer Science Conference, Sydney, pp. 1—10.

ABRAMSON, D.A. & KEEDY, J.L., 1985. Impleﬂehting & Large Virtusl Memory in
a Distributed Coamputing System. Proc. 18th. Hawaii International
Conference on System Sciences, Honoluliu.

DENNIS, J.B. & VAN HOEN, E.C., 1965, Programming Semantics for
Multiprogrammed Computations. Comm. ACM, 9, 2, pp. 143-155,

47

ENGLAND, D.M., 1972. Architectural Features of System 250. Infotech State
of the ART Report 14, Operating Systems, pp. 395-426.

FABRY, R.S., 197# Capability Based Addressing. Comm. ACM, 17, 7, bpp.
§0o3-412.

I.B.M., 1978. 1IBM System/38 Technical Developments. General Systems
Division, I.B.M.

INTEL, 3978; Inﬁel Multibus Specification., Manual Order Number 9800683~02,
Intel Corporation.

INTEL, 1981. Introduction to the iAPXU432 Architecture. Intel Corporation
Manual Order No. 171821-001.

KEEDY, J.L., 1980. Paging and Small Segments: A Memory Management Model,
Proc, 8th. World Computer Congress, IFIP-80, Melbourne, pp. 337-342,

KEEDY J.L., 1982. The MONADS View of Software Modules. Proc. 9th.
Austrelian Computer Conference, Hobart, pp. 560-574,

KEEDY, J.L., ABRAMSON, D.A., ROSENBERG, J. & ROWE, D.M., 1882. &
Comparison of the MONADS II and III Computer Systems. Proc., 9th.
Australian Computer Conference, Hobart, pp. 581-587,

MEAD, C. & CONWAY, L., 198{} Introduction to VLSI Systems. Addison~Wesley
Publishing Company. -

NEEDHAM, R.M., 1977. The CAP Project ~ An 1Interim Evaluation. Proc. of
6th. ACM Symposium on Operating System Principles, pp. 17-22.

NEWKERK, J. & MATHEWS, R., 1983. The VLSI Designer's Library. Addison—
Wesiey Publishing Company. '

PARNAS, D.L., 1972. On the Criteria to be Used in Decomposing Systems into
Modules. Comm. ACM, 15, 12, pp. 1053-1058.

ROSENBERG, 4., ROWE D.M. & KEEDY J.L., 1982, An Overview of the MONADS
Series ITr Arechitecture. Proce. th. Australian Computer Science

Conference, Perth, pp. 58-67.

ROSENBERG, J., 1982. The MONADS Series III Instruction Set. Proc., Sth.
Australian Computer Conference, Hobart, pp. TO4~718.

ROSENBERG, J. & ABRAMSON, D.A., 1985, MONADS-PC - & Capability-Based
Workstation = to Support Software Engineering. Proc. 18th Hawaii
International Conference on System Sciences, Honolulu.

ROWE, D.M., 1982. MONADS III Inter-unit Communication. Proc. 9th.
Australian Computer Conference, Hobart, pp. 719~-729, '

WALLACE, C.S., 1964, A Suggestion for a Fast Multiplier. IEEE Trans. on
Electronic Computers, Vol. EC-14, No. 1, pp. 14-17. :

WULF, W., COHEN, E., CORWIN, w;, JONES, A., LEVIN, R., PIERSON, C. &
POLLACK, F., 1974, HYDRA - The Kernel of a Multiprocessor Operating
System. Comm. ACM, 17, 6, pp. 337-345.

48

g A1

